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Effect of Temperature on Polaronic and Bipolaronic 
Structures of the Adiabatic Holstein Model 
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It is proved that the polaronic and bipolaronic structures found in the adiabatic 
Holstein model at large electron-phonon coupling by Aubry, Abramovici, and 
Raimbault survive under connection of the electrons to a low-temperature heat 
bath, uniformly in the size of the system. Bounds are computed for one-dimen- 
sional nearest neighbor chains, and some sample solutions are continued 
numerically. 
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INTRODUCTION 

Much of solid-state physics and chemistry has to do with the effects of 
interactions between electrons in a network of ions and distortions of the 
network. The latter are commonly called "phonons," whether or not they 
are wave-like in character. Because of the large mass ratio between ions 
and electrons, it is useful to study the adiabatic approximation where the 
phonon variables u.,. describing the distortion of the network are regarded 
as classical and the electrons are assumed to relax instantaneously to equi- 
librium in the given phonon configuration. This approximation reduces the 
system to classical dynamics for the phonon variables u = (us) in an effec- 
tive potential W[u].  

The Holstein model is the simplest case of an electron-phonon system, 
where the electrons are assumed to be independent fermions on a network 
S with hopping amplitude tAr~ from site r to site s, the phonon variables 
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u,. are independent one-degree-of-freedom harmonic oscillators, and the 
electron-phonon coupling energy is simply the product of u,. with the elec- 
tronic density on site s. The shape of the network is not important for our 
purposes, the only requirements being that A be Hermitian and have finite 
12-norm (i.e., bounded spectrum). The assumption of independent har- 
monic oscillators can easily be relaxed to allow for some anharmonicity 
and coupling between the phonon variables, but we restrict to this case 
to keep the exposition simple. More general forms of electron-phonon 
coupling can be considered, but the above form can often be recovered by 
redefinition of u.,.. Also, for simplicity of exposition we concentrate on the 
case of spinless fermions. 

The most important aspects of the dynamics resulting from the adiabatic 
approximation are the set of local minima of W and the linearized motion 
around them. In ref. 2 a nearly complete understanding of these two 
aspects was found for the adiabatic Holstein model in the regime where 
electron-phonon interaction dominates electron hopping. The set of local 
minima of W was proved to be in one-to-one correspondence with the set 
of configurations of plus and minus signs on the network, and the spectrum 
for vibrations about each local minimum was proved to be bounded away 
from zero (the local minima have a "phonon gap"). The main open 
question is which of the local minima is the lowest, but this will depend 
crucially on the shape of the network S and we do not address it here. 

In the present paper, these results are extended to the case of warm 
electrons, that is, instead of putting the electrons into their instantaneous 
ground state, we suppose they take up an instantaneous Fermi-Dirac dis- 
tribution. We reach the same conclusions as ref. 2 provided the electronic 
temperature T and the chemical potential ~ lie in a domain R to be given 
in (2.6). 

One may criticize that it is inconsistent to do statistical mechanics for 
the electrons and deterministic mechanics for the phonons. It is true that 
when electron hopping is very weak, the time scale to achieve thermal equi- 
librium among the electrons might not be short, and it is true that main- 
taining the electrons at temperature T will lead to transfer of thermal 
energy to the phonons. However, our conclusions extend to significantly 
nonzero values of electron hopping (e.g., around 0.08 in dimensionless 
units for a 1D nearest neighbor chain), and because the mass ratio between 
ions and electrons is so large it is not implausible that this level of electron 
hopping is sufficient to lead to electron equilibration on a time scale 
shorter than that for motion of the ions. Second, it is plausible that at low 
enough temperatures transfer of energy from the electrons to the ions 
happens on a time scale longer than that for motion of the ions. We do not 
attempt to justify these assumptions quantitatively, but it seems that they 
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are often used in the theory of charge density waves. Ideally, we would like 
to study the statistical mechanics of the whole system. In the adiabatic 
approximation this reduces to studying the distribution e -pwt"~, where 
f l= lIT. As this is dominated by the lowest local minima, and for weak 
electron hopping and chemical potential near - �89 all the local minima turn 
out to have nearly the same height, our study of the local minima is an 
important first step. 

Related problems are treated in refs. 7, 6, and 4. In particular, ref. 7 
treats the adiabatic Holstein model on Z a with translation symmetry, at the 
symmetry point where chemical potential # = - � 8 9  they find the ground 
states and prove existence of two low-temperature phases for d~> 2. Our 
paper can be viewed as a first stage in analyzing the case of general # and 
general networks. 

The plan of the paper is as follows. The problem is formulated mathe- 
matically in Section 1. It is solved at the uncoupled limit in Section 2. 
In Section 3, it is proved that each of these solutions has a unique con- 
tinuation for small electron hopping, uniformly in the size of the system. 
Our results are illustrated numerically on one-dimensional nearest neighbor 
chains in Section 4. First, a domain of electron hopping to which our 
continuation theorem applies is computed. Second, the ways certain solu- 
tions cease to be continuable if the electron hopping is too large are studied. 
The paper concludes with Section 5 on potential extensions of the work. 

1. M A T H E M A T I C A L  F O R M U L A T I O N  

The Hamiltonian for the adiabatic Holstein model with spinless fer- 
mions is 

= ~_(p.7+Us)+h (1.1) 
s e  S 

with 

where 

h = y.  cn,.u,.-  t 3  (1.2) 
s ~ S  

ns=a~a.~. (1.3) 

is the number operator on site s for fermions with creation and annihilation 
operators a.~ and a,., respectively, satisfying the anticommutation relations 
{at, a~} = {a~, a~} =0,  {a~, a~.} = 6~.~; and 

a,. d,~.a~. (1.4) 
r , ~ E S  
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is an off-diagonal Hermitian hopping operator, i.e., preserving the total 
number 

N =  y, (1.5/ 
s E S  

but not the individual numbers n.,., with the only condition being that 

IILJII2 < ~ ,  e.g., 

A= ~ a~+,a.,.+a*~a.~+, (1.6) 
s ~ Z  

for a 1D nearest neighbor chain. 
There are two parameters: c represents electron-phonon coupling and 

t represents the fermion hopping amplitude. It is easily seen that only the 
ratio c2: t plays a role. We will be interested in the neighborhood of the 
atomic limit t = 0, which Aubry named the "anti-integrable limit" in anal- 
ogy with a related problem in dynamical systems. 

Aubry et al. ~2~ proved that all the local minima of the energy for the 
adiabatic Holstein model at the atomic limit (where they are easy to com- 
pute) have locally unique continuations for small t, and they keep phonon 
gap. The proof was subsequently improved in refs. 3 and 8. 

The purpose of the present paper is to extend these results to warm 
fermions. The fermions are assumed to come from a bath with temperature 
T (whose inverse will be denoted fl as usual) and chemical potential ~t. 
Then instead of looking for local minima of the expectation of (1.1), we 
should look for local minima of the.fi'ee energy 

WEu] = ' 5u; + F~,~c[ u] (1.7) 
s ~ S  

where (e.g., ref. 5) 

and 

F~t~c[ u] = - T t r  log( 1 + e-/S~u-/')) (1.8) 

H =  diag(u,.) - t3 (1.9) 

is the single-fermion Hamiltonian corresponding to H. 
Differentiating (1.7), we find that a necessary condition for a local 

minimum is 

�9 [u] :=u+  p[u] =0 (1.10) 
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where p = (p.,.) with 

p.,=OF~t~r (1.11) 

which is easily verified to have the interpretat ion as the fermionic density 
on site s. Solutions of (1.10) are nondegenerate  local minima if and only if 

M := I +  0p/0u (1.12) 

is positive definite there. Equat ions (1.10) and (1.12) will be used to con- 
tinue local minima of (1.7) as t in (1.9) is increased from zero. 

2. LOCAL M I N I M A  AT THE ATOMIC  LIMIT 

At  the a tomic  l im i t  (t = 0), 

and so 

where 

F~t~[u] = - T  Y' log(1 + e  -/J"'-~-'')) (2.1) 
.,'~ S 

W[u] = ~ V(us) (2.2) 
s E S  

V(u) = �89 2 -  Tlog(1 + e  -/~"'-~'~) (2.3) 

The function V is a double-well potential  for (it, T) in the indicated region 
of Fig. 1, whose boundary  is given by the condit ion for a double root  of V', 
i.e., a simultaneous root  of 

V'(u) = u + (e/m'-~) + 1 )-J  = 0 

,1 
V"(u )=  1 - s e c h - ~ f l ( u - p ) = O  

(2.4) 

(2.5) 

The symmetry about  It = - �89 is due to the symmetry a.~ ~ a~, u,. ~ - 1 - u.,., 
p~---, - 1 - I t ;  which is a special but inessential feature of  the model (1.1). 
The double-well region can be expressed as 

where 

R =  {(/~, T) '  0~< T <  1/4, p _  <lt <I t+}  (2.6) 

it+ = - T l o g x _ + -  1/(1 + x + )  (2.7) 
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Fig. 1. 

single well T 

A ~ 

-i -0.8 -0.6 -0_4 -0.2 

The region of the plane of chemical potential it and temperature T for which tile func- 
tion V of (2.3) is a double-well potential. 

with 

x_+ = - 1  +fl/2_+ - f l  (2.8) 

We denote the two local minima of V by U_(It, T) < U+(/,t, T), and 
their heights by V+_(/t, T) respectively. We deduce that for (/L, T) e R, there 
is a local minimum/l  g of the free energy corresponding to each choice of 
configuration ~ =  ((~).,-~s of plus and minus signs on the network S: 

Its free energy is 

(u~), = u~, (2.9) 

W=N+ V+(p, T)+N_ V_(/t, T) (2.10) 

where N+ are the numbers of + and - signs in the chosen configuration. 
Note that V < V +  f o r / 1 > - � 8 9  V _ > V +  f o r p < - � 8 9  

Note also that by (1.10), the electronic density on site s for an equi- 
librium state is simply p.,.= -u, . .  Hence for solutions at the atomic limit, 
p takes the values p+ = - U •  and p_  > p + .  As T ~ 0 ,  we have p_  ~ 1 
and p § --* 0, so we can think of a minus sign as a polaron and a plus sign 
as an empty site. 

3. CONTINUATION FOR SMALL HOPPING 

We will prove that the local minima of Section 2 can be continued for 
small t (uniformly in the choice of configuration of plus and minus signs 
and in the size of the network S, but dependent on p and T). The technique, 
as in refs. 3 and 8, is to use the implicit function theorem on Eq. (t.10), 



Adiabatic Holstein Model 477 

using supremum norm (llull~ = sup{ lu~.l: s ca} )  on the space of phonon 
configurations u. Thus we have to check that p[u, t] is C ~ and that M of 
(1.12) is invertible (both statements being with respect to supremum 
norm). The conclusion is that solutions of (1.10) can be continued with 
respect to t as long as M remains invertible. Furthermore, they satisfy 

du/dt = - M - ~ OplOt (3.0) 

so we can obtain lower bounds on the distance in t for which they can be 
continued if we obtain upper bounds on the norms of M-~ and Op/Ot. Note 
that while M remains invertible, the solutions also remain local minima, 
because they cannot change index. 

For  H as in (1.9) and E e  C\spec H, define the resolvent operator 

G ( E ) = ( E - H )  -1 (3.1) 

Then using spectral projection (e.g., ref. 9), we can write (1.8) as 

Felr c = T fr  e-Pie-/ ' ) )  --2rt---i tr log(1 + G(E) dE (3.2) 

where F is any sum of closed contours whose winding number about each 
point of the spectrum of H is + 1 and about each pole of the logarithm is 
0. As will be seen shortly, in the regime of interest the spectrum of H is 
contained in two intervals I--- on the real axis, an d / t  lies between them. 
An example of a contour F corresponding to this situation is sketched in 
Fig. 2. We denote the set of poles of the logarithm by 

P = {,u + (2n + 1 ) inT: n ~ 7/} (3.3) 

From (3.1), for ECspecH,  G is differentiable with respect to any 
parameter for which H is, with derivative 

G' =GH'G (3.4) 

Hence from (1.11), (3.2), and (1.9), p is given by 

p ~ = - 2 ~ i t r  fr log( l  +e-#~E-")) Gn, G dE (3.5) 

where ns denotes the projection operator onto site s. Now 

tr Grt,G = (G2)ss (3.6) 

and then we can use the following lemma. 

822/85/3-4-12 
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Fig. 2. A contour F for Eq. (3.2). 

L e m m a .  For  any  analytic function f and closed con tour  F, 

Irf( E) G 2 dE= I r f ' ( E )  G dE (3.7) 

Proof. 

Hence 

where 

In tegra t ion  by parts,  using dG/dE = - G  2, f rom (3.1). 1 

1 
P~= ~i~i Ir a(E) G,, dE 

a(E) = (eP~E-~'~ + 1 ) -1 

(3.8) 

(3.9) 

will be recognized as the F e r m i - D i r a c  filling factor, which confirms the 
in terpreta t ion of  Ps as fermionic density on site s. 

Checking that  p is C 1 with respect to u and t is virtually the same as 
the zero- tempera ture  case treated in ref. 3, so we skip that  step here. N o w  
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we are ready to estimate the derivatives of p with respect to u and t. Using 
(3.8), (3.4), and (1.9), we have 

Ops 1 fr Our =~ni dEa(E) G,rG,..~. (3.10) 

Opt. 1 f dEa(E)(GAG)ss (3.11) Jr 8t 2hi 

The simplest choice for the contour F is a circle around /z of radius 
2NzrT, N large, plus a small backward circle around each point of the set 
P of (3.3) inside the large circle. It is easily seen that the contribution of 
the large circle goes to zero as its radius goes to infinity, hence it does not 
contribute. Each small circle contributes -2z~i times the residue of the pole 
of a it surrounds. Hence for any function X (analytic at P) 

1 irdEa(E) X(E)= T ~. X(E) (3.12) 2rci E ~ P  

This can be seen as a discretization of the integral along a vertical line that 
we used in the zero-temperature case in refs. 3 and 8. 

We estimate the sizes of GsrGr.,. and (G AG).~., as in ref. 3. The first step 
is to show that the spectrum of H does not approach too closely to the set 
P. As in refs. 2, 3, and 8, if the u.~ are within r of their initial positions 
(U_+), then the spectrum of H is contained in the union of two intervals I • 
of length at most 2(r + t Ilzll12) centered on U_+. Hence, if 

U_ + r + t 11•112 <l~ < U+ - r -  t I1~ 112 (3.13) 

(as is the case initially in the double-well regime), then the line through P 
avoids spec H by at least 

le:=min(U+--r--tllAII,_--lt, lt--U_r--tllAII2) (3.14) 

There are only two significant changes from ref. 3 in the remainder of 
the estimations. The first is the change of the integrals of ref. 3 to sums as 
in (3.12), and the second is that the "zeroth-order" part of the diagonal 
terms Op.,./Ou, no longer vanishes, but is instead given by 

T ~ (E-u,.)--" (3.15) 
E c P  
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Reversing the transition (3.12) between integral and sum and using residue 
calculus, this is easily evaluated to be 

1 
- 4  fl- sech z ~ fl(u.~-~) (3.16) 

which can be recognized as the electronic contribution to V"(u,.), visible in 
(2.5). So we write 

M = diag(V"(us)) +j (3.17) 

Completing the estimation analogously to ref. 3, we obtain the bounds 

(  'sech  ) IlJll ~ ~< J := 6t'-S~e - - 3  \ t anh  -~--  ~- 

+ 6t4S~e- 5 (tanh eft --~----~ eft sech-' ~- 

e'-fl2 ~ sech2 ~ )  (3.18) 
- 2---4 tanh 

~- ( +4n'~ 
Op ~ <~L:=8ltlS~n-le -'- 1 eflj+2lldll2t2Sae-3 

x t a n h ~ - - ~ - s e c h  2 (3.19) 

Here, 

Let us define 

S ~ = s u p  ~" IArs['- (3.20) 
r ~ S  s E S  

f (r)=min(V"(U_ +r ) ,  V"(U+ - r ) )  (3.21) 

which is a lower bound for V"(u.~), provided that the us do not pass the 
inflection points of V at/1 _ x, where x satisfies 

sech 2 �89 = 4T (3.22) 

This is true provided r does not pass a zero o f f  Then 

IIM -1 II ~ ~< (f(r) - J )  -~ (3.23) 
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From Eq. (3.0) we deduce that the solutions can be continued with 
respect to t, with the bound 

Id~/dtl ~< L l ( f ( ~ )  - J )  (3.24) 

as long as the denominator remains positive. Note that the right-hand side 
of (3.24) starts positive, because the local minima at which we start are 
nondegenerate, and J = 0 at t --- 0. This differential inequality can be studied 
by integrating the pair 

dr/dz = L(t, r) 
(3.25) 

dt/dz = f ( r ) - J ( t ,  r) 

with respect to a pseudo-time z, from r = t = 0, until the first time that f =  J 
(note that this happens before f reaches 0, so we do not need to check that 
condition separately). Denoting by to the value of t reached then, we 
deduce that the solutions can be continued for Itl < to. By the construction, 
to depends only on (p, T)~  R, and IIA II 2 and S~. 

Furthermore, the solutions retain a phonon gap as long as they can be 
continued by our method. This is because the phonon spectrum for an 
equilibrium of the adiabatic Holstein model is precisely that of M, and thus 
there is phonon gap iff M is invertible in 12 (and then its value is 
[IM - t  [1_71). But M is invertible in l 2 as long as it is invertible with respect 
to supremum norm (in fact IIM-IlI2 ~ IIM-~II ~-~), because it is symmetric. 
Incidentally, for more general form of phonon kinetic energy, the phonon 
spectrum is not directly related to the spectrum of M, but it is still true that 
there is a phonon gap if and only if M is invertible in supremum norm. 

4. N U M E R I C A L  I L L U S T R A T I O N S  

As an illustration of the continuation proof given in Section 3, Fig. 3 
indicates the bound to obtained by numerical solution of the differential 
equations (3.25) for a one-dimensional nearest neighbor chain (Ars= 1 for 
[r-s[  = l, and 0 otherwise), as a function o f p  and T. For  this calculation, 
we used the bounds [[A[[2 ~< 2, S~ ~< 2. Note that these are optimal bounds 
for the infinite chain, and for all finite chains of length at least 3 with 
periodic boundary conditions, and the bound Sj  ~< 2 is also optimal for 
chains of length at least 3 with free ends. 

Note that at T- -0 ,  p plays no role as long as it is in the electronic gap 
between occupied and unoccupied energy levels. However, our procedure 
for obtaining bounds for general temperature is not able to take this into 
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Fig. 3. 

0,04~ 
o.o21 ~ 

-0 .5  

O. 

A numerically computed region of (I~, T, t) space in which continuation is guaran- 
teed, for a ID nearest neighbor chain. 

account, and so the bound t o obtained in Fig. 3 depends on ll even at 
T =  0. In a sense, in refs. 3 and 8 we chose ll = - I ,  which optimized the 
results. 

Next we give some numerical illustrations of  the continuation of 
specific equilibrium states for one-dimensional chains. These are computed 
by using Newton's method on Eq. (1.10), where p and 09/Ou are evaluated 
from the eigenvalues and eigenvectors of H, Eq. (1.9), 

as follows: 

H t l t "  = E " t l  t ' '  (4.1) 

~rJ~' 2 p~. = ~ cr(E") I .,.l (4.2) 
v 

where 

~, ~ *  - , E  ~ Op.,./Our = Y'. ~ , i  ~u,~. ~ 7ur .,. gt , E v) (4.3) 

~(a, , (E)-cr(E '  ) ) / ( E - E '  ) if E: / :E '  
g( E, E'  ) = [ a ( E)  otherwise 

(4.4) 

We take chains with free ends so that H is tridiagonal, which simplifies the 
computat ion of its spectrum. 

Figure 4 shows the continuation of the state + + + + + + - + + + + 
+ +  from t = 0  for a c h a i n  of l eng thn  13 a t p  ~ T=0.05 ,  u n t i l M  
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O.l 

0 

0 

Fig. 4. C o n t i n u a t i o n  of  a po l a ron  on the centra l  site of a cha in  of length 13 wi th  p = - ~ ,  

T =  0.05, from t = 0 unt i l  it is ann ih i la ted  at  abou t  t = 0.21363. 

ceases to be invertible, which happens at about t =0.21363. This is above 
our bound of Fig. 3, as indeed it must be, but by a factor of less than 3, 
indicating that our bound is not grossly conservative. 

Note that the total electronic charge 

Q=~p.,. (4.5) 
s 

associated with an equilibrium state typically varies with t. If it is desired 
to maintain constant electronic charge, then p should be simultaneously 
varied to achieve it, by adding (4.5) (or more easily, Z u s = - Q )  to the 
system of equations (1.10) to be solved, and/z  to the set of variables u to 
be solved for. 

An interesting question is to find with which solution(s) the above 
solution bifurcates when M loses invertibility. Usually, for a critical point 
of a family of smooth functions on a finite-dimensional manifold, degeneracy 
is lost by collision with one or more other critical points, which is called 
bifurcation. There are some constraints on the ways this can happen, which 
are provided by Morse theory. The simplest constraint is that the sum of 
the parities os the indices of the critical points involved in a bifurcation is 
conserved. Recall that the index of a nondegenerate critical point is the 
number of negative squares in the Lagrange normal form for the second 
variation, or equivalently the number of negative eigenvalues. The parity is 
+ 1 for even index, - 1  for odd index. In generic one-parameter families, 
the only way that a local minimum (index 0) can become degenerate is by 
annihilation with a saddle (index 1) in a fold bifurcation. Our system has 
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some  symmetr ies ,  however ,  such as the  ref lect ion R~: us ~-+u , ,+ l_s ,  a n d  
w h e n  ~ = - �89 there  is the  a d d i t i o n a l  ref lect ion s y m m e t r y  R 2: us ~ - 1 - us. 
These  symmet r i e s  a dd  the p i t ch fo rk  b i fu rca t ions  as a l t e rna t ive  r o b u s t  ways  
to lose a local  m i n i m u m :  a symmet r i c  local  m i n i m u m  changes  to a saddle ,  
g iv ing  b i r th  to a pa i r  of  n o n s y m m e t r i c  local  m i n i m a  or  a b s o r b i n g  a pa i r  of  

-0.~ 

-0.4 

-0.6 

-0.~ 

-i 
-i -0.8 -0.6 -0.4 -0.2 0 

b 

-0.2 

-0.4 

-0.6 

-0.8 

-i -0.8 -0.6 -0.4 -0.2 0 

Fig. 5a-e. Contour plots of the free energy for the two-site Holstein model with u = - �89 
T= 0.1 at five values of t = 0.18, 0.225, 0.255, 0.35 and 0.6 (figures 5a-e, respectively); darker 
regions have lower free energy. 
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nonsymmetric saddles. They also provide an alternative way to lose a non- 
symmetric local minimum: it merges with its reflection and a symmetric 
saddle, giving rise to a symmetric local minimum. 

Now for (p, T) in R with T # 0 ,  in addition to 2" local minima, a 
chain of length n has a total of 3" critical points at the atomic limit, by 
using the local maximum of V [Eq. (2.3)], which we denote by U,,,, for 

C 

-0 .~ 

-0.4 

-O.E 

-0.~ 

-i 
-i -0.8 -0.6 -0.4 -0.2 0 

d 

-0 .~  

-0 .~  

-O.E 

- 0 . 8  

-1 
-1 - 0 . 8  - 0 . 6  - 0 . 4  - 0 . 2  0 

Fig. 5. (Continued) 
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-C 

-(3 

-0  

-0  

-1  - 0 . 8  - 0 . 6  - 0 . 4  - 0 . 2  

Fig. 5. (Cont#med) 

some sites instead of the minima U• These 3" critical points are all non- 
degenerate and can all be continued with respect to t, though the bound to 
applies only to the local minima. We supplement the symbols { + ,  - }  of 
Section 2 by the symbol m, representing the choice U .... so we label the 
solutions at the atomic limit by strings of symbols from { - ,  m, + }. Note 
that the local maximum of V ceases to be smooth at T =  0. For  this reason, 
the critical points of nonzero index were not treated in refs. 2, 3, and 8. 
Nevertheless, it is possible to first eliminate the phonon degrees of freedom 
instead of the electronic ones, and hence view the T =  0 problem as finding 
critical points of a function of electronic degrees of freedom; this function 
is smooth and has many critical points other than local minima. The catch 
is that they are nearly all degenerate at the atomic limit, forming sub- 
varieties, so a refinement of our methods is needed to see what continues 
to t > 0, but we are in the process of treating this situation. 

We tried continuing some saddles, e.g., + + + + + + rn + + + + + + ,  
but none of the ones we tried became degenerate in the same place [in 
(u , t ) ]  as + + + + + + - + + + + + + .  So to shed some light on the 
problem, we studied the simplest nontrivial case: n = 2. 

For a chain of length 2, with p = - �89 and T =  0.1, we continued each 
of the critical points from the atomic limit in t until it became degenerate. 
The + + and - - solutions become degenerate at t -~ 0.264, and the + - 
and - +  solutions at t~-0.49. But the saddles + m ,  - m ,  m + ,  m -  all 
become degenerate before these, at t -  0.246, and the maximum mm even 
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earlier, at t = 0.206. To see how the branches connect, we plotted the free 
energy as a function of u--(Ul ,  u2) for intermediate values of t in Fig. 5. 
We see that two additional branches of critical points are created by a 
pitchfork from the central maximum m m  at t ~ 0.206, they absorb the 
saddles by a pitchfork at t = 0.246, and finally annihilate with the minima 
+ + and - - ,  respectively at t ~ 0.264. 

We expect it to be a general feature that there will be bifurcations 
creating further critical points of nonzero index before any of the local 
minima bifurcate, especially as T ~ 0 ,  because the zone of negative 
curvature around U,,, is small and so the critical points of positive index 
are less "stable" under continuation. Thus we expect that it will often 
happen that the local minima from the atomic limit are destroyed by bifur- 
cation with secondary critical points which are not direct continuations 
from the atomic limit. 

5. EXTENSIONS 

Extension to spin-�89 fermions is straightforward, as in ref. 3. One intro- 
duces chemical potentials Ft T, r , ,  and has to sum along two lines of poles, 
but the ideas remain the same. This leads to local minima consisting of 
arbitrary configurations of polarons, bipolarons, and holes, for weak 
enough electron hopping. 

Finite coherence length, i.e., exponential decay of the response to a 
localized external force, can also be proved for networks with suitable form 
of coupling, along the lines of refs. 2 and 8. 

I "~ The phonon energy can easily be modified from ~s~s~_U; to other 
functionals thus allowing nonlinearity and dispersion (as in refs. 2 and 3), 
provided that at the atomic limit the configuration has a phonon gap. 

A natural question is whether we have found all the local minima for 
Itl < to. By constructing domains of contraction (as in ref. 2) for the Newton 
step used in the proof of the implicit function theorem about each atomic 
solution, and showing that outside the union of these neighborhoods either 
�9 [u]  is too far from zero or D ~  is negative in some directions, we expect 
that one can prove there exists a t ~ > 0, depending only on (p, T) e R, and 
113112 and Sao such that there are no other local minima for Itl < t~, but we 
have not yet done so. 

The same strategy of proof  can also be used for (p, T) outside R, but 
the results are less interesting. If (~t, T)~  R, then V has a single well, so 
there is only one local minimum at the atomic limit. We can prove that it 
continues for at least some interval of t. Furthermore, it should be easy to 
prove that it remains the only critical point for some interval of t. 
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For (It, T)~ R, it would be very interesting to find out which of the 
local minima is the lowest, and to study properties of the distribution 
e - # r ~ u ] .  

Finally, it would be most interesting to extend the results to the cases 
of quantum phonons or the Holstein-Hubbard model, which includes 
electron-electron interactions, tl~ 
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